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Abstract— In this article the issue of data based modeling is
dealt with the help a network of uniform multivariate fuzzy
classifiers. Within this framework the innovation consists in
the specification of a hierarchical design strategy for such a
network. Concretely, the two network specifying factors, namely
the layout of the network structure and the classifier nodes
configuration, will be addressed by a hierarchical clustering
and selection strategy. The resulting network will represent the
model’s complexity in terms of interconnections between fuzzy
classifier nodes whereas the model’s vagueness and imprecision
is captured within each fuzzy classifier node. Throughout the
paper the network design and operation is illustrated with the
help of an example.

I. INTRODUCTION

Nowadays more and more complex and networked phe-
nomena are subject to analysis. The goal of such an analysis
is the creation of a model or the classification of the con-
sidered phenomenon. Basically there are two main philoso-
phies to deduce such a model, theoretical and experimental
modeling. When applying the latter it can be assumed that
measurement data reflect the complexity of a phenomenon
under consideration at least partially. Unfortunately, this
data might also exhibit imprecision or depict interesting
phenomena characteristics just vaguely. A possibly way to
incorporate occurring imprecision is provided within the
framework of fuzzy set theory [12]. Another important point
is the detail of a data deduced model. On theone hand
detailed modeling is costly, one the other hand one would
favor the most general model. To circumvent this problem
different layers of detail can be introduced. Coping with
different levels of detail a network oriented representation
has been proven promising [2]. A network of fuzzy pattern
classifiers is such a combination of the network and the fuzzy
set approach of modeling. Its basic design will presented
section by section, starting with an introductive example.

II. INTRODUCTIVE EXAMPLE

In order to become acquainted with the purpose of this
work, let us consider the following introductive example
where the exemplary set of data depicted in Fig.1 forms
the starting point. Obviously the 1200 objects of this data
set contain more or less well separated, noisy data struc-
tures which could have been formed by an underlying
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phenomenon. The task at hand is to determine a model
which captures the existing data structures respecting the data
immanent uncertainties. The goal of such a model could be to
assign unknown objects to their corresponding data structure.
In general such a task is referred to as pattern recognition,
and as [5] points out, there are a lot of sophisticated solutions
for such a task. However [5] states as well that there is little
research in structure describing fuzzy models. This work
addresses the setup of such a fuzzy model.

Fig. 1. Data basis of the example

Instead of applying a heavy mathematical ordnance the
modeling approach featured here is guided by a more intu-
itive perception of patterns favoring comprehensibility. For
the given data set consider a human observer. At a first
glance the observer will recognize three major subsets (K1,
K2 and K3). After a second, more detailed analysis, the
observer would state that the left subset emerges from two
entangled halve circle shaped subsets, and the upper right
subset consists of three minor subsets.

In terms of modeling the lines above can be paraphrased
as follows: in a first step the observer sets up a coarse
model encompassing the main features of the entire data set.
In a second step, and only if it is necessary, the observer
would incorporate further specification to the coarse model
creating a new layer of more elaborated models. The result
of the intuitive modeling process on the exemplary data set
is depicted in Fig.2.

Fig. 2. Intuitive model for the example

Furthermore Fig.2 clarifies that new layers of detail lead
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to a further levels of hierarchy and consequently to a
network of models. The advantage of such a network is
its comprehensibility. Additionally such a network works
in a human–like manner (from coarse to fine) even when
classifying unknown objects. Thus granting a transparent and
cost optimal classification process.

Due to its simplicity this intuitive approach will be the
template for the automatic setup. Decomposing this intuitive
approach in terms of an automated modeling task, two major
obstacles arise: firstly to find suitable data inherent structures
and secondly to appropriately model these structures.

III. DATA INHERENT STRUCTURES

A. Cluster Analysis

The first subtask to be dealt with is to locate data in-
herent structures, which is referred to as an unsupervised
learning task [5]. As Fig.3 summarizes, a versatile and well
researched access to such a type of learning is provided by
methods of cluster analysis.

Fig. 3. Approaches to cluster analysis

As [11] points out each cluster method uses its spe-
cific strategy to discover such structures. Accordingly it
is afflicted with drawbacks, for example some phenomena-
typical structures remain indiscoverable by a certain method.
Consequently, to overcome these drawbacks, at least an
ensemble of sufficiently diverse cluster algorithms is applied
when dealing with more complex data [1].

However, for the sake of clarity only the three agglomer-
ative cluster algorithms (single,complete and wards linkage)
will be considered in this paper, but, as a matter of principle,
any other cluster algorithm is suitable. Background of this
choice are the properties provided by the correspondent
algorithms. Single linkage provides the chaining property,
complete linkage provides compactness and Wards linkage is
a variance criterion, providing noise resistance [7]. Moreover
all three algorithms originate from the same cluster approach,
facilitating their evaluation.

B. Cluster Evaluation

Since all three clustering algorithms are hierarchical ag-
glomerative approaches applying different merging criteria
they share the same kind of monotony, that is clusters grow
monotone non–decreasing. This type of monotony can be
expressed in terms of a distance measure (dm), where every
merging process (object to cluster, cluster to cluster) is
associated with a new merging distance. The sequence of
resulting merging distances can be interpreted as a notion

of cluster stability, whereas cluster configuration associated
with a long merging distance are referred to as stable
and well separated configurations, and cluster configuration
associated with a short merging distance are referred to
as unstable and loose configurations. Hence studying the
stability of emerging cluster configurations provides a formal
cluster configuration assessment and selection criterion.

An easy understandable and yet illustrative way to gain an
overview about the stability of all resulting cluster configura-
tions is to map their corresponding merging distances in a so
called dendrogram (see Fig.4). Since each cluster algorithm
applies a different merging criteria the magnitude of the
resulting merging distances varies significantly, rendering
a quantitative comparison futile. The normalization (1) of
the merging distances dmi provides a circumvention to this
obstacle. It results in quantitative comparable results (dni) as
well as it preserves the qualitative relation, hence it will be
used throughout the paper.

dni =
dmi

max
i
dmi

(1)

The index i ∈ [1 . . .M ] and M is equal to the number of
merging processes during the clustering.
The exertion of all three cluster methods on the introductive
example results in the normalized dendrograms according
to Fig.4, with the single linkage dendrogram on the upper
left hand side, complete linkage on the upper right hand
side and the Wards linkage dendrogram on the lower left
hand side. Considering the distances dni between emerging
cluster configurations based on the dendrogram (Fig.4), it
becomes apparent that, for all three cluster methods, the
three–cluster configuration depicted on the lower right hand
side is the most stable one, since it is associated with the
longest relative merging distance. In concrete numbers the
most stable configuration is obtained by single linkage with
a maximal relative merging distance of 0.5032 (see Fig.4).
Accordingly the single linkage cluster configuration can be
taken as the most sensible choice for a structure proposal.

With the selection of a data inherent structure the first
subtask has been completed and the second subtask can be
focused on.

IV. FUZZY MODELING

Given a data inherent structure (e.g. a cluster config-
uration), the second subtask is to determine an appro-
priate model. A desired model should be characterized
by the following features: easy interpretability, explicit-
ness/transparency, memory efficiency, and, as Fig.1 illus-
trates, it has to capture the imprecision and vagueness
reflected in the given data set. There are plenty approaches to
solve this task (e.g. Artificial Neural Networks [6], Bayesian
Networks [8], probabilistic models, fuzzy set models [3],
Support Vector Machines [10]), yet considering the attributes
of a desired model, Artificial Neural transparency lack and
Bayesian Networks lack explicitness, as well as Support
Vector Machines lack interpretability. Consequently the re-
maining approaches are probabilistic models and the fuzzy
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Fig. 4. Normalized dendrograms of the example

set approach. Since there is little prior information, and if
additionally set-intern distributions are taken into account, a
uniform probabilistic model is likely to be unavailable. On
the contrary, a fuzzy set model results only from a description
about the facts which are given/known, which in this case
are the data at hand. It is therefore that the demands favor
an approach applying fuzzy set theory.

As it is known [3] many fuzzy sets lend themselves to
model data structures howsoever natured, throughout this
paper the general fuzzy pattern class model introduced by [4]
will be used. Besides meeting all above mentioned features it
provides additional properties and methods which are crucial
for the entire modeling process, as will be exposed later on.
Due to its importance the fuzzy pattern class model will
investigated closely in the following.

A. The Fuzzy Pattern Class Model

The multidimensional fuzzy pattern class A is expressed
in every dimension of its individual class space by a para-
metrical function concept (as in Eq. 2) based on a set of
seven parameters.

µA (u, a, ~p) =



a

1 +
(

1
bl
− 1
)(

u

cl

)dl
, u < 0

a

1 +
(

1
br
− 1
)(

u

cr

)dr
, u ≥ 0

(2)

Where the parameters denoted by a and ~p =
(bl, br, cl, cr, dl, dr) possess the following meaning: The
parameter a is representing the maximum value of the mem-
bership function µA. Regarding a whole class structure the
parameter a expresses the weight of a specific class. a also
embodies the topicality or authenticity of the information
represented by that class. The parameter a is characterizing

a whole class, whereas the parameters combined in ~p are
related to a specific dimension of a fuzzy pattern class.

The parameters bl, br of ~p assign left and right-sided
membership values at the borders u = cl and u = cr for
a normalized potential function (a = 1).
cl, cr characterize the left- and right-sided expansions of

a fuzzy pattern class. Both parameters mark the range of a
class in a crisp sense.

The parameters dl, dr specify the continuous decline of
the membership function starting from the class center. dl, dr

determine the shape of the membership function and hence
the fuzziness of a class. Furthermore dl, dr are mapping the
class internal distributions onto its shape. Fig. 5 summarizes
the introduced concept of the potential type membership
function considering a general one–dimensional example.

Fig. 5. Membership function and parameters.

Additionally the class describing set of parameters is
supplemented by a position ~u0 and a class specific orientation
~ϕ in the original feature space. In order to obtain a multidi-
mensional fuzzy pattern class A, the basis functions of each
class dimension are connected using the n-fold compensatory
Hamacher intersection operator (as in 3), with n denoting the
index of the basis function.[9]

kHam∩ µ
A
n =

1

1
N

N∑
n=1

1
µA

n

(3)

A result of this intersection is the conservation of the para-
metrical potential function concept as a multidimensional
class description, hence it remains a same type model[9].
Since the introduced membership model is convex in nature,
an adequate description of data set requires most likely a
set of fuzzy pattern classes, (see Fig.8). Such a set of fuzzy
pattern classes then forms a semantically and formally closed
module, the so called fuzzy pattern classifier (FPC).

B. Fuzzy Pattern Classifier Setup

However a more intriguing question is, how the fuzzy
pattern class model can be fitted to a proposed data structure.
In the case of FPCs all class parameters can be assigned
automatically by a two step aggregation procedure based
upon a labeled learning data set. Exactly this prerequisite
is fulfilled by data inherent structures resulting from cluster
algorithms.

To generalise and facilitate the calculations, the crisp
learning data set is extended to a set of fuzzy objects, using
the introduced function concept (2).
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Fig. 6. Step 1: aggregation procedure

In the first step the class position ~u0, extension cl, cr and
alignment ϕ are calculated.

As Fig. 6 exemplifies with a two–class example the posi-
tion and alignment ϕ of each class is obtained by regression,
and the extensions of the class are determined by the outmost
objects.

Fig. 7. Step 2: aggregation procedure

The class shape (dl, dr, bl, br) and the ”weight” (a) is
specified in the second aggregation step. Based on the results
of the first step the class shape is derived by the conservation
of the object cardinality. The class ”weight” is determined
by the number of objects supporting the class [4] .

Fig. 8 illustrates the resulting FPC for the favored three
class structure from the introductive example after applying
the introduced aggregation procedure.

Fig. 8. FPC resulting from the automatic construction

The result of both subtasks (Fig.8) is a coarse FPC
model H1 of the introductive example, matching the required
features.

V. EMERGENCE OF THE MODEL NETWORK

Remembering the intuitive approach, after recognizing
three main subsets/groups in the first step, all subsets have
been examined again for substructures in the second step,
and, if it would have been necessary, further steps would have
been carried on providing more and more elaborated models.
Starting from the current point (that is the coarse fuzzy
pattern model of the example), it is without any problem
to stick with the intuitive idea. Everything has already been
given to pioneer the next level of detail. The only thing to
do is to treat the discovered subsets separately, but in the
same manner as the entire data set. Concretely this means,
based on the coarse three class fuzzy pattern model of the
example, the subsets K1,K2 and K3 are now subject to closer
investigation.

In oder to avoid over complex and unreasonable models
the modeling should be stopped when the emerging data
inherent structures contain less than 5% of the entire data
sets objects.

A. Detailed Analysis of Subsets
1) Analysis of Subset K1: The reapplication of the entire

treatment to the first subset K1, reveals different data inher-
ent structures for each cluster algorithm. Tab.I) summarizes
the results with respect to the merging distances.

TABLE I
MAXIMUM RELATIVE MERGING DISTANCES FOR THE SUBSET K1

linkage single complete Wards
max dni 0.4312 0.2558 0.4232
structure type 2 cluster 3 cluster 2 cluster

As highlighted, the usage of the maximum stability se-
lection favors the single linkage two–cluster configuration,
which captures the entangled halve circle structure due to
its chaining property (see left hand side of Fig. 9). The
subsequent construction of the fuzzy pattern model results
in the FPC (H21) pictured on the right hand side of Fig.9.

Fig. 9. Most stable data structure and resulting fuzzy pattern model

As mentioned earlier, FPC H21 constitutes a deeper insight
of the underlying data structure in subset K1, yet due to
its convex nature the fuzzy pattern model is unable to
capture the circle shape. On the one hand this insufficiency
is partially compensated by the fuzziness of the model, on
the other hand it reveals demands of further research.

A third iteration of analysis (for the subsets K11, K12)
results in data structures with less than 5% of the entire data
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sets objects and therefore the analysis of K1 stops at the
second level of detail.

2) Detailed Analysis of Subset K2: For the second subset
K2 the analysis stops at the first level of detail, since all the
data structures induced in the second iteration contain less
than 5% of the objects.

3) Detailed Analysis of Subset K3: As Tab. II summa-
rizes, the more detailed investigation of subset K3 clearly
quarries a three cluster configuration induced by Wards
linkage. The corresponding peak out of the relative merging
distance results from the variance motivation of the algo-
rithm.

TABLE II
MAXIMUM RELATIVE MERGING DISTANCES FOR THE SUBSET K3

linkage single complete Wards
max dni 0.1589 0.2379 0.7012
structure type 4 cluster 3 cluster 3 cluster

It is this variance motivation that captures the intuitively
perceived three cluster configuration, as Fig.10 illustrates.
The associated fuzzy pattern model (FPC H22) contains three
classes. According to Fig.10 all these classes are highly
overlapping around the center, leading to high degrees of
class memberships for objects in this region. Exactly those
high degrees of membership render the FPC H22 to be a
more ”natural” model in so far as a human observer would
argue in the same manner since it uncertain to which cluster
a object in the center region belongs to.

Fig. 10. Most stable data structure and resulting fuzzy pattern model

The continuative analysis (for the subsets K31, K32 and
K33) results in data structures with less then 5 % of the
objects and therefore the analysis of K3 stops.

B. Fuzzy Model Network Composition

After finishing the closer examination of all subsets the
iteration stops and the resulting sub-models can be assembled
to the model network. Based on the level of detail, that
is FPC model H22 specifies subset K3, and FPC H21

substantiates subset K1, the acquired fuzzy pattern models
are arranged according to the setup in Fig.11. It becomes
obvious that basic setup of the fuzzy model network matches
the intuitively elaborated model of section II.

In summary the network design can be specified by the
following course of actions:

1.) For the available hierarchical cluster algorithms derive
a dendrogram with relative merging distances.

Fig. 11. Fuzzy model network based on hierarchical clustering

2.) Choose the most stable cluster configuration and create
the corresponding fuzzy pattern classifier. If a structure
contains less than a minimal number of objects stop the
analysis and treat the next subset.

3.) Separate the training data according to its class label.
Treat the each subset in the same manner (go back to 1.)).

4.) Connect each resulting classifier to its originating
subset.

VI. FUZZY MODEL NETWORK OPERATION MODE

In order to provide a comprehensive overview the elabo-
rated model network will be applied within the scope of the
introductive example.

From a general point view Fig.11 clarifies that FPCs form
the nodes of the model network or respectively constitute the
functional core of the network. This means they determine
the properties and capabilities of the network as well as the
”‘signals”’ governing the network operation. Consequently,
to become acquainted with the network operation, it is
necessary to understand the operation of the FPC.

A. Fuzzy Pattern Classifier Operation

In operating mode the FPC classifies unknown objects
using the class structure introduced before. The objects to
be classified are denoted by a vector ~x of their features:

~x = (x1, x2, ...xN )T
, (4)

where N denotes the number of feature dimensions. The
results of the classification process are denoted by a vector
of sympathy ~s, where the components of ~s express the
membership of the classified object to the corresponding
class:

~s = (s1, s2, ...sK)T
, (5)

where K is the total number of classes. The gradual mem-
bership of an object to a given class is calculated using (2).

sk = µk (~x) for k = 1, 2, ...,K (6)

Figure 12 illustrates the process of classification with the
help of a one-dimensional three class structure. The object
to be classified is situated in the right outskirt of the first
class, in the center of class two but also in the left center
of the third class. Alongside with the classification task the
classification results are listed.

It becomes obvious that the vector of sympathy contains
three membership values, describing a unique assignment of
the object to the class structure with respect to its location
in the feature space.

As it has been elaborated above, the signals available to
govern the network operation are the features of an unknown
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Fig. 12. Object classification

object as inputs and the memberships of the according classes
as output. The most simple but yet most understandable
way to govern the network operation is to route the signals
exclusively based on their maximal membership. Since every
sub–model or node originates from a specific subset, it will
only be triggered if its corresponding sympathy is maximal.

B. Network Operation

The operation of the created model network is illustrated
with the classification of the highlighted object in Fig.
13. It has been randomly selected from the learning data.
According to the cluster analysis it is situated in between
the classes K31 and K32 formed in the second level of the
hierarchy.

Fig. 13. Object to illustrate network operation

The test object is fed into the network via the data source
block which is situated in the upper left corner. The results
of the network operation are stored in separate output units
forming the terminal nodes of the tree structure.

Fig. 14. Network operation for the highlighted object

The classification of the test object is highlighted with
different types of arrows. Continuous lined arrows display the
path actually taken, while the dashed arrows are representing
all neglected options. For the test object the processing

starts at the most abstract level, there it belongs with a
membership of µK3 = 1 to K3, with µK1 = 0.1115 to K1

and with µK2 = 0.036 to class K2. Due to the maximum
sympathy selection it proceeds to the classifier node H22 of
the second level (see Fig. 14). This terminal node models
the classes K31, K32 and K33 and classifies the object
with memberships of µK31 = 0.978, µK32 = 0.968 and
µK33 = 0.853.

VII. SUMMARY AND CONCLUSIONS

This paper presents a cluster analysis driven approach
toward hierarchical data based modeling using a standardized
model network. The main building block of the network is
based on a multivariate and parametric classification concept
(FPC). Considering the network of FPCs, the classifier con-
cept provides the network nodes with a local and fuzzy model
or knowledge base combined with the ability of fuzzy classi-
fication. In contrast to the local character of a single classifier
node, the net–like interconnection of such nodes provides
the following possibilities: structuring and combination of
local models; scaling of the detail of a model;interpretative
and intuitive decomposition and representation of complex
tasks; integration of a priori or structural knowledge. It is,
the instance that the discovery and selection of data inherent
structures meets exactly the prerequisites for the automated
FPC design which establishes the basic condition for a
recursive and thus very intuitive automatic design strategy
for networks of structure mapping fuzzy models.
Objects for future research are the development of a more
sophisticated stopping criterion and the determination of a
class description based cluster selection criterion. Another
area of interest is the learning ability of such FPC networks.
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